
Abstract- In this paper a new model for studying  
cardio-renal reflex dynamics has been introduced. 
Such models are important since by understanding 
cardio-renal dynamics well, better  total artificial heart 
(TAH) implants may be designed and/or better drug 
treatment plans may be developed for helping TAH 
patients.     

The model introduced combines relevant parts of 
the two cardiovascular system models developed 
previously by Guyton et.al. A simulation of total 
surgical cardiac denervation (a condition which results 
in TAH implants), has resulted in an increase in the 
blood volume below the experimentally observed 
values. A correction of the kidney model including the 
effect of the renal sympathetic nerve activity on the set 
point of the tubulo-glomerular feedback mechanism is 
suggested. 
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I. INTRODUCTION 

 
Clinical and experimental observations indicate an 

increase especially in blood volume in case of Total 
Surgical Cardiac Denervation (TSCD) which constitutes a 
serious obstacle for patients with Total Artificial Heart 
(TAH) and allows a maximum usage of five months[1]. 

Increases in blood volume results in renal 
vasodilatation, diuresis and natriuresis. These renal 
reactions are caused in part, by cardiac mechano-receptors 
located in atrial and ventricular chambers, which play a 
central role in sensing changes in blood volume. 
“Normally innervated cardiac mechano-receptors respond 
to hypervolemia by supressing vasopressin, renin-
angiotensin-aldosteron axis, thirst and sympathetic traffic 
to the kidney. Ablation of cardiac afferent input should 
disinhibit the cardiorenal reflex, increase renal nerve 
activity and renal vascular resistance, reduce glomerular 
filtration rate and increase vasopressin, plasma renin 
activity, angiotensin II and aldosteron” [2][3]. It is claimed 
that these effects weaken the ability to excrete salt and 
thereby increase blood volume. 

Guyton et al. have developed a detailed model of the 
circulatory system and simulated it  on a computer [4]. We 
hope that studies on such  models will provide better 
understanding of the cardio-renal reflex mechanisms 
which may eventually lead to the development better TAH 

implants. This understanding may also lead to new drug 
treatments to regulate the renal blood flow in TAH 
patients.  

II. METHODOLOGY 
 

TSCD is the ablation of the afferent and efferent heart 
nerves. In TAH applications the symptoms mentioned 
above are observed in the long term exceeding fifteen 
days. Since one of the goals of this study is to provide an 
improvement in TAH applications, long-term dynamics of 
the Cardiovascular System has been focused upon. For this 
purpose relevant parts of Guyton’s two models of the long 
term regulation of the cardiovascular system have been 
combined to analyse the mechanisms under TSCD 
conditions[4][5]. The resulting new model is shown in 
Figure 1. This model has been implemented using 
Matlab/Simulink. This model includes following blocks 
and sub-systems: 

Block 1 calculates the arterial pressure as a product of 
the cardiac output and the total peripheral resistance.  

Block 2 calculates the pumping capacity of the heart as 
a function of the arterial pressure.  

Block 3 calculates the pumping effectiveness of the 
heart as a product of the autonomous system response and 
the pumping capacity of the heart.  

Block 4 calculates the autonomous system response as 
a function of the arterial pressure.  

Block 5 calculates the baro-receptor and the chemo-
receptor effects as a part of the autonomous system 
response as well as the baro-receptor adaptation.  

Block 6 calculates the cardiac output as a function of 
the pumping effectiveness of the heart, where the gain is 1 
for a healthy heart. For pathological heart conditions this 
gain has to be changed. 

Block 7 calculates the right atrial pressure by using 
Frank Starling Law.  

Block 8 calculates the venous return to the heart as a 
ratio of the difference between the mean filling pressure 
and the right atrial pressure to the venous resistance.  

Block 9 calculates the blood volume as a function of 
the extracellular fluid volume.  

Block 10 calculates the mean filling pressure as a 
function of the blood volume.  

The input to the Integrator is the rate of change of the 
extracellular fluid volume and the output is the 
extracellular fluid volume. 

The Kidney sub-system calculates the renal vascular 
resistance, the effects of the autonomic stimulation, and 
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the blood viscosity on the renal vascular resistance. The 
effects of arterial pressure, renal vascular resistance and 
plasma colloid osmotic pressure on glomerular pressure, 
filtration pressure, glomerular filtration rate, and renal 
blood flow are also calculated. Feedback control of the 
afferent arteriolar resistance is calculated in response to 
the flow of fluid through the tubular system. The 
antidiuretic hormone and the aldosterone hormone on 
tubular reabsorption and the effects of the rate of urinary 
output, aldosterone secretion, and the atrial natriuretic 
hormone effect on sodium excretion are computed. 

The control of angiotensin hormone formation as a 
function of the renal blood flow and the sodium 
concentration is calculated by the Angiotensin sub-system. 
This system also calculates the ‘Angiotensin Effect’ 
(ANGE) on other functions of the body expressed as a 
multiplier of its normal value. 

The effects of the arterial pressure, potassium to 
sodium ratio, and the angiotensin on aldosteron hormon 
secretion rate are calculated in the Aldosteron sub-system. 
The ‘Aldosteron Effect’ (ALDOE), which represents the 
functional effect of aldosterone in the body expressed as a 
multiplier of its normal value is also calculated here. 

The Antidiuretic sub-system takes care of the total 

effect on the antidiuretic hormone secretion of sodium 
concentration, of the right atrial pressure, and of the 
autonomic stimulation. The functional effect of the 
antidiuretic hormone expressed as a multiplier of its 
normal value is represented by ADHE in this system. 

The accumulation of sodium in the extracellular fluids, 
the concentration of sodium, the extracellular fluid 
potassium, as well as the concentration and rate of 
potassium excretion by the kidney are calculated in the  
Electrolyte sub-system. 

The Vascularization sub-system calculates TPR and 
VR by using the auto-regulation mechanism, which 
regulates the number and diameter of tissue vessels based 
on long term blood flow through peripheral vessels. 

The relationships of non-linear blocks have been 
obtained from [5] by means of curve fitting as follows: 

HPC=((-4)*(0.00001)*(AP)+(0.0078)*(AP)+0.666) 
OSR=(3.079)*(exp(-0.011*(AP)) 
RAP=(0.2787)*(exp(0.228)*(CO)) 
dVas/dt=(11.312)*(exp(-0.4799*(CO)) 
BV=(2.1001)*ln(ECFV)-0.335) 
MFP=(9.71)*(BV)-(39.497) 
The fluid intake and the non-renal fluid loss are taken 

as 0.001597(L/min) and 0.000625(L/min), respectively. 

Fig. 1: Shematic Representation of Cardiovascular System Model 
 

AP: Arterial Pressure  ECFV: ExtraCellular Fluid Volume   ALDOE: Aldosteron Effect   FI: Fluid Intake  
ANGE: Angiotensin Effect  HCT: Heamotocrit            ADHE: Antidiuretic Effect    HPC: Heart Pumping Capacity 
MFP: Mean Filling Presssure BA: Baroreceptor Adaptation   BE: Baroreceptor Effect   NaEXT: Sodium Excretion 
BV: Blood Volume   NRL: Non-Renal Fluid Loss   CE: Chemoreceptor Effect  OSR: Autonomous System Resp. 
CK: Potassium Concent  PPC: Plasma Osmotic Pressure   CNa: Sodium Concentration  RAP: Right Atrial Press. 
CNE: Atrial Natriuretic Effect RBF: Renal Blood Flow    CO: Cardiac Output    TPR: Total Peripheral Resistance 
VR: Venous Resistance  Vas: Vascularisation 



III. RESULTS 
 
In simulations using the model presented in Fig.1, the 

values of all the physiological parameters are set to their 
normal steady-state values. After the system reaches the 
steady-state, the renal sympathetic nerve activity (except 
for those coming from the baro-receptors and chemo-
receptors) is increased in order to simulate TSCD, which is 
known to increase the renal nerve sympathetic activity 
(RSNA). In this simulation the change in the antidiuretic 
hormone secretion under TSCD is not included. 

This increase in RSNA, results in simultaneous 
changes in the renal blood flow (RBF), the afferent 
arteriolar resistance (AAR), the tubulo-glomerular 
feedback effect (TFE), the arterial pressure (AP) and the 
blood volume (BV) as shown in Fig.2. AAR, AP and BV 
exhibit a slightly increasing behaviour, while RBF and 
TFE decrease slightly. However, these changes are quite 
small compared to the experimentally observed ones [6]. 

 

 

 
 
Fig 2: Figure of simultaneous changes of RSNA, 

RBF,AAR,AP,TFE and BV 
 
 

IV. DISCUSSION 
 
Experimental observations show that in TSCD RSNA 

increases. Therefore, TSCD may be simulated by  an 
increase in RSNA. This assumption is justified by the 
inverse-cubic-power dependence of the angiotensin 
hormone formation on the renal blood flow as used in the 
model. The expectation is that an increase in AAR 
resulting from an increase in RSNA will lead to a decrease 
in renal blood flow. Consequently, angiotensin hormone 
formation will increase resulting in a subsequent increase 
in aldosterone hormone and tubular reabsorption of 
sodium and water. These will finally result in an increase 
in blood volume as observed experimentally and clinically 
upon TSCD. 

The expectations described above are indeed observed 
in the simulations using the model. A very slight decrease 
in the renal blood flow and a very small increase in the 
blood volume have been demonstrated in the simulations 
The amount of these changes are considerably below the 
experimental and clinical observations. 

This deviation from clinical observations may be  
explained on the basis of tubulo-glomerular feedback 
effect (TFE). The glomerular filtration rate (GFR) auto-
regulation is supplied primarily by the tubulo-glomerular 
feedback mechanism (TFE). It has been proposed that the 
fluid flow in the loop of Henle or some solute 
concentration in the loop fluid is sensed by the cells of the 
macula densa and that these cells send a message through 
the juxtra-glomerular apparatus resulting in adjustments in 
the arteriolar resistance (mainly the afferent arteriolar 
resistance) [6]. This feedback mechanism adjusts the renal 
blood flow and the glomerular filtration rate. In the 
simulations it is observed that the renal blood flow is kept 
almost constant by the TFE mechanism when the afferent 
arteriolar resistance is increased by increasing the renal 
nerve sympathetic activity. This deviation from the 
experimental observations leads us to the hypothesis that 
renal nerves modulate the set point of the tubulo-
glomerular feedback system. A similar hypothesis has also 
been proposed by Richard J. Roman et al., who have 
developed a whole-kidney computer simulation [6]. 

 
V. CONCLUSION 

 
Total Artificial Heart (TAH) implanted patients are 

faced with seriously altered cardiovascular states due in 
part to cardiac denervation,  resulting in increases 
especially in blood volume, and other life-threatening 
complications. It is therefore, very important to understand 
well the cardio-renal reflex dynamics. This understanding 
may eventually lead to the development of better TAH 
implants and/or to new drug treatment plans for helping 
TAH patients through the regulation of the renal blood 
flow. 

 
 



In this study cardio-renal reflex dynamics has been 
studied via a model obtained by combining the relevant 
parts of two detailed cardiovascular system models 
developed previously by Guyton et.al. In the simulation 
studies performed using this cardiovascular system model, 
it was observed that the total surgical cardiac denervation 
(TSCD) conditions results in an increase in the blood 
volume below the experimentally and clinically observed 
amounts. This deviation is explainable in terms of the  lack 
of  the effect of  RSNA on the tubula-glomerular feedback 
control mechanism in the proposed model. This is also 
supported by the suggestions of Richard J. Roman et. al. 
[4]. We conclude that an addition of the renal nerve effect 
on the tubula-glomerular feedback control mechanism to 
change the set point will result in a better modelling of the 
kidney dynamics and consequently in more realistic 
simulation results for the TSCD. 

At the next stage of our studies an appropriate 
modification of the kidney dynamics including the 
correction mentioned above will be investigated.  
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